Stefan Kolek
kolek@math.lmu.de · Munich, Germany
Education
- 2021-2025 PhD Computer Science
- Ludwig-Maximilians-Universität München, Germany
- Title: Sparse Representation Methods for Explainable Image Classification
- 2018-2021 MS Mathematics
- Technische Universität Berlin, Germany
- 2015-2018 BS Mathematics
- Ludwig-Maximilians-Universität München, Germany
Open Source
- CartoonX: A wavelet-based post-hoc explanation method for image classifiers. CartoonX visualizes the piece-wise smooth relevant part of an image after optimizing a sparse mask in the wavelet domain of the image to minimize the distortion in the classifier's output.
- Query Dictionary Learning for V-IP: An optimization algorithm to train Variational Information Pursuit (V-IP), a recently introduced a recently introduced learning framework to construct classifiers that are interpretable by-design, with a learned query dictionary.
Publications
- Learning Interpretable Queries for Explainable Image Classification with
Information Pursuit.
- S. Kolek, A. Chattopadhyay, K. Chan, H. Andrade-Loarca, G. Kutyniok, R. Vidal. ICCV 2025.
- Beyond the Calibration Point: Mechanism Comparison in Differential Privacy.
- G. Kaissis*, S. Kolek*, B. Balle, J. Hayes, D. Rückert. ICML 2024.
- Optimal privacy guarantees for a relaxed threat model:
Addressing sub-optimal adversaries in differentially
private machine learning.
- G. Kaissis, A. Ziller, S. Kolek, A. Riess, D. Rückert. NeurIPS 2023.
- Explaining Image Classifiers with Multiscale Directional Image Representation.
- S. Kolek, R. Windesheim, H. Andrade-Loarca, G. Kutyniok, R. Levie. CVPR 2023.
- Cartoon Explanation of Image Classifiers.
- S. Kolek, D. Nguyen, R. Levie, J. Bruna, G. Kutyniok. ECCV 2022 (Oral).
Personal Interests
Capoeira, Languages, Photography, Reading Copyright © 2022-, Stefan Kolek