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Abstract

Information Pursuit (IP) is an explainable prediction al-
gorithm that greedily selects a sequence of interpretable
queries about the data in order of information gain,
updating its posterior at each step based on observed
query-answer pairs. The standard paradigm uses hand-
crafted dictionaries of potential data queries curated
by a domain expert or a large language model after
a human prompt. However, in practice, hand-crafted
dictionaries are limited by the expertise of the curator
and the heuristics of prompt engineering. This paper
introduces a novel approach: learning a dictionary of
interpretable queries directly from the dataset. Our
query dictionary learning problem is formulated as an
optimization problem by augmenting IP’s variational
formulation with learnable dictionary parameters. To
formulate learnable and interpretable queries, we lever-
age the latent space of large vision and language models
like CLIP. To solve the optimization problem, we pro-
pose a new query dictionary learning algorithm inspired
by classical sparse dictionary learning. Our experiments
demonstrate that learned dictionaries significantly out-
perform hand-crafted dictionaries generated with large
language models.

1 Introduction

Information Pursuit (IP) [7, 5, 6] is a promising recent
framework for explainable machine learning by-design.
Given a pre-defined finite dictionary of semantic queries
relevant to the task, the IP algorithm sequentially selects
interpretable queries over the input data in order of
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information gain, updating the posterior at each step
given the previously asked query-answer pairs. Once the
posterior reaches a user-defined confidence level, IP stops
querying the data and makes a prediction. The model
explanation is a short sequence of interpretable query-
answer pairs that IP selected for making a prediction.

IP has two key ingredients: (1) a mechanism that
generates semantic and task-relevant queries and (2) a
mechanism that answers the queries. In previous work
[7, 5, 6], the query dictionary was hand-crafted in the
form of manually annotated concepts, like those found
in the CUB-200-2011 dataset [25], or concepts that were
generated by a large language model, such as GPT-3 [4],
following an elaborate human prompt. The answering
mechanism followed one of two possible strategies: (a)
training a model on expert concept annotations to predict
the concept presence; (b) leveraging foundation models
such as CLIP [20] to annotate the data with concept
presence scores automatically. It is the latter mechanism
that makes IP cost-efficient and scalable.

Previous work on IP [7, 5, 6], made the critical assump-
tion that their hand-crafted dictionaries are sufficient
for the task. However, in reality, this may not be the
case. The dictionary curator may need more expertise
and fail to provide a dictionary that is sufficient for mak-
ing accurate predictions, or the dictionary may contain
many queries that are not relevant to the task. This
motivates the central question of our work:

Can we learn a data-driven query dictionary?

Paper Contributions. A learned query dictionary for
IP should be (1) interpretable, (2) sufficient, and (3)
yield short explanation lengths. We achieve this as fol-
lows. First, we leverage large vision models such as CLIP,



providing a semantic embedding space where every point
can represent a query and an associated concept. We
define the answer mechanism as a thresholded dot prod-
uct with the embedding of an image. The binary query
answer representation ensures no information beyond a
concept’s presence or absence is disclosed. Since thresh-
olded dot products are linear classifiers parametrized by a
hyperplane, we cast the problem of learning a dictionary
of queries as the problem of finding a set of hyperplanes
in a semantic embedding space for IP. To formulate an
optimization objective for learning a query dictionary,
we augment IP’s variational formulation with the param-
eters of our learnable queries. Given a query dictionary,
Variational IP (V-IP) [5] learns a querier and classifier
network on randomly sampled histories of query-answer
pairs. The proposed query-learning algorithm alternates
between dictionary and querier updates while continually
optimizing the classifier. Our algorithm shares appeal-
ing connections to seminal sparse dictionary learning
algorithms and outperforms hand-crafted baseline dictio-
naries generated by GPT-3 on three benchmark image
classification datasets.

Paper Outline. In Section 2 we discuss related work.
In Section 3 we introduce the IP framework [7] and
its variational characterization V-IP [5]. In Section 4
we formulate a space of learnable queries and a query
dictionary learning algorithm for IP. In Section 5 we
compare our learned dictionary to baseline dictionaries
on benchmark image classification datasets and analyze
our algorithm. In Section 6 we discuss our results and
the limitations of our method. Finally, we conclude in
Section 7.

2 Related Work

Explainable Al has evolved along two distinct lines: post-
hoc explanations and explainability by-design. The post-
hoc approach [15, 21, 2, 23] treats the model as a black
box, allowing curators to focus initially on maximiz-
ing performance and addressing explainability subse-
quently. Despite their advantages, post-hoc methods
have been criticized [22, 24] for insufficient faithfulness.
In contrast, the explainability by-design paradigm em-
beds interpretability into the core of the model design,
ensuring that the explanations provided are inherently
aligned with the model’s internal reasoning processes.
IP [7, 5, 6], which forms the foundation of our work, is

part of a broader family of by-design frameworks, which
include Concept Bottleneck Models (CBMs) [13, 26, 18]
and Prototype Models [8, 17].

Concept Bottleneck Models (CBMs) predict targets
by applying an interpretable model, such as a linear
model, to an intermediate layer of human-understandable
attributes. A key similarity between CBMs and IP is
their reasoning through interpretable concepts. Both
methodologies necessitate a task-relevant set of these
concepts. In the CBM framework, as explored in [26, 18],
and also in IP [6], this set of interpretable concepts is
often generated using a large language model like GPT-3
[4]. However, a language model-generated set of concepts
may not be optimally tailored to the task’s training
data. Our work addresses this gap by introducing a
method to learn IP’s query dictionary directly from the
data, a contribution that should also interest the CBM
community.

Prototype-based models, exemplified by the Proto-
typical Part Network (ProtoPNet) [8] and ProtoTree
[17], classify images by identifying prototypical parts
and synthesizing evidence from these prototypes for the
final prediction. While conceptually distinct from IP,
prototype models relate significantly to our work due
to their data-driven approach to learning prototypes.
Similarly, our work introduces a novel methodology for
learning the query dictionary of interpretable concepts
in IP directly from the data.

3 Background

This section reviews IP, its implementation-friendly vari-
ational formulation V-IP [5], and the baseline query
dictionary for explainable image classification with IP.

3.1 Information Pursuit

We denote random variables with capital letters and
their realizations as lowercase letters. Our work defines
all random variables over a common sample space 2. Let
X: Q> XandY : Q — Y be the input data and its
ground truth label. We denote P(Y | X) as the ground
truth conditional distribution of Y given X. A query ¢
is a function ¢ : X — A mapping data X to an answer
q(X). For example, if X is an image of an animal and
q represents the query “Does it have wings?”, then one
can define ¢(X) as +1 for images of animals with wings



and —1 otherwise. A query dictionary is a collection
Q = {¢W}_, of n queries.

Given a dictionary Q of semantic queries, one can
construct an interpretable predictor by sequentially se-
lecting queries from Q such that the average number
of queries needed for an accurate prediction is minimal.
Solving this problem is hard [7], but IP can greedily
approximate the solution. For a fixed data point z°P,
IP selects the queries in order of information gain:

q¢1 = argmax (¢ (X);Y), (1)
qeQ
Gey1 = argmax ] (¢(X);Y | que (z°™)),  (2)
qe

where I denotes mutual information, gx41 denotes the
query selected in iteration k + 1, and

quk (2°%) = {(Qi>Qi (lﬁ(Obs))) }; (3)

denotes the history of observed query-answer pairs. The
IP algorithm terminates after 7 iterations if the en-
tropy of the posterior P (Y | q1.r (m"bs)) is below a user-
defined threshold or surpasses a fixed budget of 7 itera-
tions. After IP terminates querying the input data, IP
predicts the label

argmax P (Y =y | q1.r (xObs)) . (4)
yeY

3.2 Variational Information Pursuit

A natural approach to selecting the most informative
query in Egs. (1) and (2) is to first learn a generative
model p(Q(X),Y) and then compute mutual information
for each query g € Q. However, both intermediate steps
are computationally prohibitive for high-dimensional
data, such as images. To address this challenge, Varia-
tional Information Pursuit (V-IP) [5] solves an equivalent
tractable variational optimization objective parameter-
ized by neural networks. The V-IP approach defines two
neural networks: (1) a classifier network

forqun () »yey (5)

mapping a history of k£ observed query-answer pairs to a
class label, and (2) a querier network

9y qu (2°) = qry1 € Q (6)

mapping a history of k observed query-answer pairs to a
newly selected query.

For an input X, let S denote a randomly sampled
history of query-answer pairs:

S =A{(g,q; (X)) |j €I},

where Z C {1,...,|Q|} are query indices randomly sam-
pled from a pre-specified distribution such as uniform
sampling. Applying the querier g, (S) € Q yields a new
query given a history of randomly drawn query-answer
pairs. In V-IP, the querier is trained to select a new query
that when added to the history improves the prediction
of the classifier. More precisely, the querier and classifier
networks are jointly trained with stochastic gradient de-
scent (SGD) to minimize the KL divergence between the
true posterior P(Y | X) and the posterior Py(Y | S, Ay)
predicted by the classifier fy, which is the distribution
of the output Y given a history of query-answer pairs S
and a newly added query-answer pair A, chosen by the
querier gy, based on the history S, i.e.

min Jo (0, ) (7)
Jo(0,4) = E [Dxr (P Y [ X)|Py (Y[ 5, Ay (X, 5)))]

Py (Y | S, Aw (X, S)) = fp (SUAw (X, S))
All’ (X7 S) = {(quqw (X )}
Gy = gy(S)-

In practice, the random history S is first sampled uni-
formly from the query dictionary (random sampling
stage) and later fine-tuned using the querier g, to build
up the history (biased sampling stage) [5]. Mathemat-
ically, [5] prove that inference with an optimal querier
and classifier network that minimize Eq. (7) gives the
same sequence of queries as IP would select (see Egs. (1)

and (2)).

3.3 Establishing Baseline Query Dictio-
naries

As a baseline query dictionary for explainable image
classification, we follow prior work [6, 18], which uses
GPT-3 [4] to generate relevant concepts for every class
in the dataset. For example, one of the prompts is “List
the most important features for recognizing something
as a (class)”. For more details, we refer to [18]. To
obtain the query answers, each image in the dataset is
annotated with the dot product between the normalized
CLIP embedding of the image and the normalized CLIP
embedding of a concept represented as text.



4 Learning a Query Dictionary

Suppose we have a space V C {q: X — A} of queries
that we can learn for the IP dictionary. To formulate
query dictionary learning as an optimization problem,
we augment the V-IP objective with learnable queries
for the dictionary. Let fg and gy be classifier and querier
networks that take query-answer histories from a dictio-
nary Q = {¢W}7_, C V as input. We define the query
dictionary learning problem for V-IP as:

min min Jg(0,1). 8
omoil B o(0,¢) (8)

A learned dictionary for IP should be (1) interpretable,
(2) sufficient for the task, and (3) yield short explanation
lengths. Achieving interpretability requires that the
V-IP querier selects queries ¢ € V corresponding to a
semantic concept. Sufficiency and short explanation
lengths require a space of queries V' that is amenable
to optimization, enabling the minimization of objective
Eq. (8).

In the following, we begin by addressing the ques-
tion of what the space of learnable queries V' should be.
Upon choosing V', we present an optimization algorithm
to minimize the query dictionary learning objective in

Eq. (8).

4.1 The Space of Learnable Queries

We leverage large vision and language models such as
CLIP that provide aligned image and text embeddings

Er: X - E&cCR? (9)
Er:T — & CRY, (10)

where E; denotes an image encoder, E7 a text encoder,
and £ a semantic embedding space. The baseline dic-
tionary, as discussed in Section 3.3, defines the query
dictionary as

n

0= {4 =(Br(c). E/()},_. (1)

i=1

n

where {c¢;}_, is a set of concepts generated by GPT-3,
and the encoder pair (Fr, Er) is the CLIP encoder pair
with normalized output embeddings. Mathematically,
the baseline dictionary corresponds to a subset of the
dual space £%, i.e., the space of all linear forms on the
semantic embedding space £. A straightforward initial
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Figure 1: A hyperplane in a semantic embedding space
like CLIP can effectively distinguish between high-level
concepts, such as “animals versus vehicles”, and defines
an image query.

approach might therefore define the space of learnable
queries as

V=&"={¢g: X —>R|lg=(w,E; (")), we&}. (12)

In this approach, a query is a soft linear classifier in the
semantic space &£ discriminating for the presence of a
concept. Since linear classifiers are parameterized by a
hyperplane, we can cast the problem of learning a query
dictionary as the problem of finding a set of hyperplanes
in the semantic embedding space £. Fig. 1 illustrates the
notion of semantic hyperplane queries with an example.

Although the choice V = £*, is simple and natural, it
overlooks a subtle yet crucial problem that compromises
the interpretability of learnable queries.

4.1.1 Limitations of Soft Query Answers

Here we argue that query-answer chains using continuous-
valued (soft) query answers are not interpretable, as it is
often not possible to assign a semantic concept to such
queries. By definition, a query ¢ € V = £* outputs
continuous-valued (soft) query answers. We describe
geometrically why a single soft query answer can reveal
information about the presence of multiple concepts,
which makes the query difficult to interpret: consider
a hyperplane query g € V = £* that is associated with
some concept (see Fig. 1 for an illustration). Given an
image z, a soft answer g(x) reveals the exact distance



of Fr(z) to the hyperplane query. However, knowing
the distance to one hyperplane query can also disclose
positional information of Ej(x) relative to another hy-
perplane query representing a second concept. Therefore,
one soft query answer can simultaneously reveal infor-
mation about the presence of multiple concepts, making
it difficult to interpret the query. To retain interpretabil-
ity, we propose to learn queries with hard answers, i.e.,
thresholded dot product answers.

4.1.2 Hard Query Answers

We define the space of learnable queries with hard an-
sSwers as

Vi={q¢|g=sgn((w,Er(-)) —b), we&beR}

Mathematically, V is parameterized by elements from the
dual space £* and threshold parameters, i.e., V = &* xR.
Each query is represented as a hyperplane in the semantic
embedding space £ that discriminates concept presence
with a hard linear classifier. In contrast to soft query
answers, hard query answers cannot reveal the presence
of multiple concepts due to their binary nature.

Due to the geometric connection to hyperplanes (see
Fig. 1), we refer to ¢ € V = &* x R as a hard semantic
hyperplane query and ¢ € V = £* as a soft semantic
hyperplane query. In the subsequent section, we present
an optimization algorithm that learns a dictionary of
hard semantic hyperplane queries for IP.

4.2 A Query Dictionary Learning Algo-
rithm

Having motivated the choice V' = £* x R of learnable
queries as hard semantic hyperplanes queries, we revisit
the query dictionary learning problem for V-IP:

i in Jo (6, ), 13
e B, Tin o(0,v) (13)

where Jg(6,1) denotes the V-IP optimization objective
for a query dictionary Q. The most straightforward
optimization strategy concurrently applies SGD to the
querier, classifier, and query dictionary parameters to
jointly minimize the V-IP objective in Eq. (7). However,
this approach overlooks that the querier operates on a
fixed query dictionary and may require several updates
to adapt to a single dictionary update. Therefore, we
adopt a more nuanced phased optimization process. Our

final optimization algorithm relies on following three key
ingredients:

1. Batch Norm Parameterization of Queries.
This addresses how to parameterize the normal vec-
tor w and threshold b of a learnable hyperplane
query. Using batch normalization [11] techniques
to parameterize the hyperplane queries enhances
stability and performance.

2. Straight-Through Estimator for Query Gra-
dients. Employing a straight-through estimator [3]
allows for effective backpropagation through the non-
differentiable sign function in hyperplane queries.

3. Phased Optimization. Adopting a phased opti-
mization approach allows updating the querier given
a learned dictionary and conversely updating the
dictionary given a learned querier.

In the following, we discuss each ingredient in detail.

4.2.1 Batch Norm Parameterization of Queries

To facilitate optimization, we employ a batch normal-
ization [11] parameterization of our hyperplane queries.
Consider a learnable vector v € £ in the semantic em-
bedding space and learnable scalar values v, 5 € R. We
define the mean and standard deviation of the dot prod-
uct activations as follows:

n) = Ex (B QD).

) 5 (14)
o) =,|Ex (<||UH,E(X)> - p(v)) ]
A hyperplane query ¢ can be reparameterized as
(po B (X)) = )
y+B), (15

a(v)

where w and b, the hyperplane’s normal vector and
threshold, are defined as

vy

ST and e PO
Pl o ™= opy 78 (6

The key advantage of this reparameterization is that
it leads to normalized dot product activations, thereby



enhancing numerical stability and facilitating faster con-
vergence. In practice, this reparameterization is equiva-
lent to employing a batch normalization layer (BN) [11],
which during training uses empirical estimates over the
current batch for p(v) and o(v), and during inference,
relies on a running average estimate. Our batch norm
parameterized semantic hyperplane dictionary becomes:

S ()

where {v;,v;, 8;}/_; are the trainable parameters of our
dictionary.

4.2.2 Straight-Through Estimator of Query Gra-
dients

Due to the non-differentiability of the sign function,
we utilize the straight-through estimator [3] to derive
gradient estimates for gradient descent optimization. In
the forward pass, a classifier taking query answers as
input treats the binary query values

sen (BN%&. <<”Z”E (x)>)> (18)

as constants during the forward pass but uses the gradi-
ent of the continuous surrogate function

tanh (BN%Bi (<|ZHE(@>>) (19)

during the backward pass.

4.2.3 Phased Optimization

We adopt the following four-stage optimization process.

e Initialization. We initialize the query dictionary
parameters described in Eq. (17) with a unit multi-
variate Gaussian distribution for the semantic em-
bedding vectors {v;}?; C &€ and constant scalar
parameters {v; = 1}, and {8; = 0};.

o Warm-Up Phase. First, we focus on “warming
up” the dictionary, training only the dictionary
and the classifier to minimize cross-entropy on ran-
domly sampled query-answer histories without using
a querier.

Algorithm 1: Query Dictionary Learning for V-
1P

1 Initialization

2 Initialize querier network g,, and classifier network

fo. Initialize query dictionary @ as random
hyperplanes in semantic embedding space;

3 Warmup Phase

Train @ and fy to minimize cross-entropy with
random sampling without using querier;

while Q has not converged do

Querier Update Phase

Freeze Q;

Unfreeze gy ;

Train gy and fg on V-IP objective with
dictionary @ using random sampling and
subsequent biased sampling;

10 Dictionary Update Phase

11 Freeze gy;

12 Unfreeze @ ;

13 Train @ and fy on V-IP objective using biased

sampling with gy;

'S

© 0w N o o

14 end

o Querier Update Phase. We freeze the query dictio-
nary and train the querier and classifier to minimize
the V-IP objective using random sampling and sub-
sequent biased sampling.

e Dictionary Update Phase. We freeze the querier
from the previous phase and train the dictionary
and classifier on the V-IP objective using biased
sampling.

The algorithm is summarized in Algorithm 1.

4.3 Connections with Sparse Dictionary
Learning

Our query dictionary learning algorithm (Algorithm 1)
shares connections to sparse dictionary learning algo-
rithms, such as K-SVD [1], which have been pivotal
in advancing the state-of-the-art in various image and
video processing applications [10, 16]. Sparse dictio-
nary learning seeks to discover a sparse representation
of input signals, represented as a linear combination
of basic elements, or atoms, and the determination of
the atoms themselves. These atoms, constituting the
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Figure 2: Comparing the test accuracy of the V-IP classifier, post-observation of k queries selected by the V-IP
querier from (e) Learned Hard CLIP Hyperplane Dictionary, () GPT-3 Soft CLIP Embedding Dictionary, and (¢)

GPT-3 CLIP Hard Embedding dictionary.

dictionary, are typically refined through an iterative pro-
cess: a sparse coding phase, which computes a sparse
representation of the input signal utilizing the current
dictionary, and a dictionary update phase to minimize
the reconstruction error between the input signal and
its sparse reconstruction. The analogy to our query
dictionary learning method unfolds as follows.

e The query dictionary in Algorithm 1 consists of
atoms that correspond to queries for the input X,
akin to how, in sparse dictionary learning, atoms
are vectors in the signal space of X. This analogy
was already pointed out in [6].

e The querier phase in Algorithm 1 plays the role of
the sparse coding phase in dictionary learning. In-
deed, [6] establishes a profound link between IP and
orthogonal matching pursuit (OMP) [19], an im-
portant sparse coding technique. When employing
random projections of dictionary atoms as queries,
the authors demonstrate that IP closely approxi-
mates OMP.

e The dictionary update phase in Algorithm 1 refines
the dictionary with the classifier to reduce the clas-
sification error post-observation of queries sampled
with the current querier. This mirrors the dictionary

update phase in sparse dictionary learning, which
refines the dictionary to reduce the reconstruction
error for the current sparse code.

In light of the inherent connections to sparse dictio-
nary learning, we expect our query dictionary learning
approach to echo the principle from classical sparse dic-
tionary learning that learned dictionaries outperform
hand-crafted ones. In the subsequent section, we verify
this via experiments.

5 Experiments

This section presents numerical experiments for our pro-
posed query dictionary learning algorithm (Algorithm 1).
We perform these experiments on three benchmark im-
age classification datasets: CIFARIO [14], CIFAR100
[14], and Tiny ImageNet, which is a subset of ImageNet
[9] featuring 200 classes, with each class comprising 500
training images and 50 test images, all downscaled to
64x64 pixels. For each dataset, we use 10% of the train-
ing data as a validation set for hyperparameter tuning.
For the semantic embeddings (Er, ET), we use CLIP
[20] with a ViT-L/14 backbone. In line with previous
V-IP work [5], we use two-layered MLPs for both the



querier and classifier architectures. Since MLPs can
only handle fixed-sized inputs, while the querier and
classifier are expected to handle variable length histo-
ries of query-answer pairs, we use masking to handle
unobserved query-answer pairs. A maximum budget of
queries is set for each dataset, allowing 10 queries for
CIFARI10, 15 for CIFAR100, and 30 for Tiny ImageNet.
The following parameters are tuned using the validation
set: the learning rate for the Adam optimizer [12] for
the querier, classifier, and dictionary; batch size and
number of epochs in each phase of Algorithm 1; and the
number of queries in the learned dictionary. Detailed
implementation aspects are outlined in Appendix A.

We compare our learned dictionary, denoted as
Learned Hard CLIP Hyperplane Dictionary, with the
baseline dictionary, denoted as GPT-3 Soft CLIP Em-
bedding Dictionary, and the binarized baseline dictionary,
denoted as GPT-3 Hard CLIP Embedding Dictionary.
To compute the GPT-3 Hard CLIP Embedding Dic-
tionary, we calculate the dot product thresholds as the
average dot product per query over the training set. This
aligns with the expectation that dot product magnitudes
cluster around higher values when a concept is present
and lower otherwise.

5.1 Learned Dictionaries Perform Better

In Fig. 2, we compare the test accuracy of the V-IP
classifier, post-observation of k queries selected by the
V-IP querier, for our Learned Hard CLIP Hyperplane
Dictionary, the baseline GPT-3 Soft CLIP Embedding
Dictionary, and the GPT-3 Hard CLIP Embedding Dic-
tionary. Our learned dictionaries surpass the GPT-3
dictionaries in terms of performance across all three
benchmark datasets. For instance, on CIFARI10, the
learned dictionary matches the black-box test accuracy
of 95% after just four queries. In contrast, the baseline
GPT-3 Soft CLIP Embedding Dictionary reaches 80%
accuracy following the same number of queries.

5.2 Interpretability of Learned Dictio-
naries

We interpret two V-IP predictions in Fig. 3 with a
Learned Hard CLIP Hyperplane Dictionary trained on
CIFARI10. In the figure, x denotes an image from the
CIFARIO test set (class deer in Fig. 3a and class dog in
Fig. 3b). The right matrix plot shows the posterior proba-

bility matrix {P (Y =y | ¢1.x (z))}x,y, which is obtained
by applying the classifier to the history of k query-answer
pairs for image x selected in the order of the V-IP querier.
The left matrix plot shows the class-conditional probabil-
ity matrix {P (¢; (X) =+1|Y =y)};, (estimated with
an empirical average over the training dataset), indicat-
ing which images from which class lie on the positive
side of the learned hyperplane query.

In the following, we interpret the first four queries
selected by the querier that lead to the classifier confi-
dently identifying the image in Fig. 3a as a deer: 1st
Query: This query discriminates between vehicles and
animals, assigning +1 to the former and —1 to the lat-
ter. The deer image is correctly queried as an animal,
prompting a uniform posterior increase for all animal
classes. 2nd Query: After identifying the image as an
animal, the querier probes for the “smaller four-legged
animals”, signified by 41 for cats, dogs, and frogs, and
—1 for other classes. The deer is correctly queried as
g2(z) = —1, leading the classifier to reduce the likelihood
of the animal classes dog, cat, and frog while increasing
the probability for bird, deer, and horse. 3rd Query:
The classifier believes the image is a bird, deer, or horse.
Subsequently, the querier probes for the “hoofed ani-
mals,” signified by +1 for deer and horses and —1 for
other classes. The deer image is correctly queried as
one of the hoofed animals, which leads to the classifier
distributing the posterior probability between deer and
horse. 4th Query: The final query aims to distinguish
between deer and horses. The query assigns +1 for
horses and —1 for other classes. Observing g4(z) = —1,
the classifier conclusively identifies the image as a deer.

We interpret the dog image in Fig. 3b analogously. The
first two selected queries are identical for the dog and
deer images because they are both queried as animals.
However, the answer to query two is g2(z) = +1 since the
dog image belongs to the “smaller four-legged animals”.
Query three probes for most of the “domesticated ani-
mals” in CIFAR10. The query answer g3(x) = +1 for the
dog image prompts the classifier to focus on the classes
dog and cat. Finally, query four probes for deer, horse,
or dog images. Since the dog image returns g4(x) = +1,
the classifier confidently identifies the image as a dog.
Our examples demonstrate that our learned semantic
hyperplane queries separate classes based on higher-level
image semantics.
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Figure 3: Interpreting two predictions for V-IP with the Learned Hard CLIP Hyperplane Dictionary trained on
CIFARI10: (a) interpretation for image x of class deer; (b) interpretation for image x of class dog. The queries {q;}7_,
are selected in order by the V-IP querier for each image. For each example, we plot two matrices. The left matrix
plot shows the class-conditional probability matrix {P (g; (X) = +1[Y =y)}, , indicating which images from which
class lie on the positive side of the hyperplane query. The right matrix plot shows the posterior class probability
matrix {P (Y =y | q1.x ()}, to visualize the predicted class probabilities by the V-IP classifier after observing the
first 1 < k < 4 query-answer pairs that the V-IP querier selected. In particular, the first query selected by the querier
probes for “animals versus vehicles”. For both images, the classifier distributes the posterior among the animal classes
uniformly after observing the first query-answer. For the second query, the dog, unlike the deer, is identified as one
of the “smaller four-legged animals”. The querier adapts. In particular, for the deer image, the third query probes
whether the image is a “hoofed animal”, while for the dog image the query probes for most of the “domesticated
animals”.

5.3 Algorithm Analysis Advantages of Batch Norm Parameterization. Pa-
rameterizing learnable hard semantic hyperplane queries
with batch normalization techniques enhances perfor-
mance, likely due to better calibration of CLIP dot

products (see Appendix B.3).

This section summarizes our empirical insights on Algo-
rithm 1, with detailed results in the Appendix B.

Importance of Warm-Up Phase. We observe the
optimal performance of Algorithm 1 when the warm-up
phase runs until convergence. The learned dictionaries
converge after a single iteration of the warm-up phase,
querier update phase, and dictionary update phase, each

Efficacy of Overcomplete Dictionaries. Our find-
ings suggest that learned dictionaries with more queries
can achieve higher accuracy, with an optimal size bal-

running until convergence.

Impact of Dictionary Initialization. Initializing
the learnable dictionary with the GPT-3 baseline dic-
tionary revealed only a mild speed-up in convergence,
not a significant improvement in accuracy compared to
randomly initialized dictionaries of the same size (see
Appendix B.2).

ancing performance and convergence speed (see Ap-
pendix B.4).

Impact of Encoder Architecture. Experiments with
different CLIP backbones show significantly superior per-
formance and faster convergence with larger backbones,
like ViT-L/14, compared to smaller ones, like ViT-B/16
(see Appendix B.5).



Phased versus Joint Optimization. Jointly optimiz-
ing querier, classifier, and dictionary on the V-IP objec-
tive fares significantly worse than our phased approach
in Algorithm 1 (see Appendix B.6 for a comparison).

Hard Query Answers are Necessary for Inter-
pretability. Algorithm 1 with soft query answers
reaches over 50% test accuracy after observing a single
query-answer pair on CIFAR10 compared to 25% with
the baseline GPT-3 Soft CLIP Embedding Dictionary
(see Appendix B.7). Considering CIFAR10’s class labels
(airplanes, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks), it is implausible that a single query
corresponding to a semantic concept reveals over 50% of
the class labels. Therefore, the query must correspond
to multiple concepts that are difficult to disentangle or
not be semantic.

6 Discussion

Our experiments show that learned dictionaries can sig-
nificantly outperform hand-crafted dictionaries for IP.
The wide gaps between the learned dictionaries and
the baseline GPT-3 dictionaries further suggest that
hand-crafted dictionaries, even by powerful pre-trained
language models such as GPT-3, are far from optimal.
Our query dictionary learning algorithm offers a princi-
pled method to generate interpretable and task-sufficient
query dictionaries that are adapted to the training data.

Despite these advancements, our method remains lim-
ited by the lack of an automated process for translating
learned hard semantic hyperplane queries into their cor-
responding interpretable concepts. The current approach
to interpretation relies on manual effort to identify which
concept activates the positive/negative side of the hyper-
plane query. Future work aims to develop an algorithm
that automatically matches learned queries with their
inherent natural language concepts. Additionally, the
efficacy of our method is contingent upon the quality of
features provided by the foundational model, in our case,
CLIP. Tasks for which CLIP provides inadequate feature
representations would inherently limit the performance
of our method.

7 Conclusion

Hand-crafted query dictionaries for IP may be insuffi-
cient for real-world tasks. We addressed this problem
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by proposing learned data-driven query dictionaries for
IP that are both sufficient and interpretable. Our work
presents the first algorithm to learn a query dictionary for
explainable image classification with IP. We leveraged
large vision models like CLIP to formulate learnable
and interpretable queries and frame query dictionary
learning as an optimization problem by augmenting the
variational TP objective with learnable query parame-
ters. To minimize the objective, we introduced a phased
optimization algorithm with appealing connections to
classical sparse dictionary learning. Our query dictio-
nary learning algorithm outperformed the baseline GPT-
3 CLIP dictionaries on benchmark image classification
datasets, echoing the principle from classical sparse dic-
tionary learning that learned dictionaries outperform
hand-crafted ones.
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A  Experiment Details

In the following, we outline the implementation details
for the experiments in Section 5.

Datasets. Our experiments employ three datasets: CI-
FARI10 [14], CIFAR100 [14], and Tiny Imagenet. The
latter is a subset of ImageNet [9] featuring 200 classes,
with each class comprising 500 training images and 50
test images, all downscaled to 64x64 pixels. For each
dataset, we use 10% of the training data as a validation
set for hyperparameter tuning.

Query Dictionaries. The GPT-3 generated concept
sets for the CIFAR10, CIFAR100, and Tiny ImageNet
baseline dictionaries are available in the GitHub repo’
from [18]. Note we use the concept set for ImageNet from
[18] to generate the baseline query dictionary for Tiny
Imagenet. As described in Section 4.1, the learnable
query dictionaries are defined as

(o= (5 (7 20)) .

where {v;}7; C R%, {7;}", C R, and {B;}7_, are learn-
able parameters.

Q

Query Answers. Denote the set of all query answers
for a dictionary Q and a data point x as

(20)

For the baseline GPT-3 dictionary, we compute the query
answer as

¢"(z) = (Br (ei), Br (x)), (21)
where {¢;}1_, is the concept set generated with GPT-3
and (Ep, Er) are the CLIP text and image encoders
with unit norm embeddings. Following [18], we Z-score

normalize the query answers given a training set {zy }2_,
as

: (22)

Ihttps://github.com/Trustworthy-ML-Lab/
Label-free-CBM/tree/main/data/concept_sets
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where
1 n N
AT (4)
DB BRI (23)
j=1k=1
R 1 n N 0 s
O =N Z (¢ (zy) — )" (24)
j=1k=1

The Z-score normalization speeds up convergence during
training. Note that this normalization is employed only
for the GPT-3 query dictionaries.

For the learned dictionaries, we cannot perform Z-score
normalization because the CLIP dot product changes
throughout training. Instead we employ a BatchNorm
layer, i.e.,

1) =sen (BN, ({2 E@)) ). 29

To obtain a gradient estimate, we apply the straight-
through trick: in the forward pass of the classifier and
querier, we show the binary answers returned by the sign
function, while in the backward pass, we use

¢ (z) = tanh <BN%m (<HZ| E (z)>)> . (26)

Representing and Updating the History. In V-IP,
the input to the classifier fy and querier gy is a query-
answer pair history S of variable length. Following the
original V-IP work [5], we represent the history S for a
sample z, as a binary mask M and Q(z) ® M, where ®
denotes the Hadamard product. If history S contains the
i-th query-answer pair, then M; = 1, otherwise M; = 0.

Suppose S*) denotes a history of k query-answer pairs
for z and M®*) is the associated binary mask, then we
can update the history with a new query using the querier

o+
MDY = p®) g, (8K, (27)
SEFD = 50 1 Q(2) ® gy (S™M). (28)
In particular, g4 returns a one-hot encoding to select

the next query. We use a straight-through softmax layer
on the query logits to backpropagate gradients through

9y

Classifier and Querier Architecture. The classifier
and querier architecture is a two-layer, fully connected
neural network. Fig. 4 illustrates the architecture with
a diagram. The size of the query dictionary only affects
the final output dimension of the querier gy, while the
number of class labels only affects the final output di-
mension of the classifier fy. We never share the weights
between the classifier and the querier networks. We
apply a softmax layer to the class and query logits to
obtain probabilities for each class and query, respectively.
During training, we employ a straight-through softmax
[3] with temperature parameter T for the querier out-
put. We linearly decay the temperature T for every
experiment from 1.0 to 0.2 for all epochs. We find V-IP
training is not particularly sensitive to the annealing
scheme for T'.

Training Details of Query Dictionary Learning
for V-IP. All hyperparameters were tuned using the
validation set.

e CIFAR10: We sample histories of no more than 10
query-answer pairs. We used a dictionary size of 50.
We used 50 warm-up epochs, 10 random sampling
epochs followed by 50 biased sampling epochs in
the querier phase, and 100 epochs in the dictionary
phase. We used a learning rate of 0.001 for the
Adam optimizer with a batch size equal to 512.

e CIFAR100: We sample histories of no more than
30 query-answer pairs. We used a dictionary size of
892 (the same size as the baseline GPT-3 dictionary).
We used 300 warm-up epochs, 20 random sampling
epochs followed by 80 biased sampling epochs in
the querier phase, and 200 epochs in the dictionary
phase. We used a learning rate of 0.001 for the
Adam optimizer with a batch size equal to 512.

e Tiny ImageNet: We sample histories of no more
than 30 query-answer pairs. We used a dictionary
size of 1000. We used 400 warm-up epochs, 20
random sampling epochs followed by 80 biased sam-
pling epochs in the querier phase, and 200 epochs
in the dictionary phase. We used a learning rate
of 0.001 for the Adam optimizer with a batch size
equal to 512.

Training Details of Classic V-IP with GPT-3 Dic-
tionaries. All hyperparameters were tuned using the
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Figure 4: Diagram of the neural network architecture for (a) classifier fp and (b) querier g,. “Shared” indicates that
two linear layers share weights. “Concatenated” implies the output from previous layers is concatenated. Every arrow
— before the concatenation and after the input layer applies a LayerNorm, followed by ReLU. In the forward pass of
gy, we convert the query logits into a one-hot encoding with a straight-through softmax.

epochs. The learning rate for the Adam optimizer
is 0.001 with a batch size equal to 512.

validation set.

e CIFAR10: We sample histories of no more than 10
query-answer pairs. We use 300 random sampling
epochs followed by 100 biased sampling epochs. The
learning rate for the Adam optimizer is 0.0001 with
a batch size equal to 512.

We employed these hyperparameters for the soft and
hard query answers.

e CIFAR100: We sample histories of no more than
30 query-answer pairs. We use 400 random sampling
epochs followed by 200 biased sampling epochs. The
learning rate for the Adam optimizer is 0.0001 with
a batch size equal to 512.

Training Details of Black Box Baseline. For the
black box baseline, we use a MLLP and a dropout layer
following the CLIP image encoder. The exact archi-
tecture is outlined in Table 1. We train the MLP for
100 epochs with a batch size equal to 512 and use the
Adam optimizer with learning rate 0.001 and weight
decay 0.0001.

e Tiny ImageNet: We sample histories of no more
than 30 query-answer pairs. We use 400 random
sampling epochs followed by 300 biased sampling

14



Layer Type Output Dimension
CLIP Encoder 768
Dropout 768

Fully Connected 2000

Fully Connected 1000

Fully Connected 500

Fully Connected 400

Fully Connected 300

Linear # Classes

Table 1: Layer types and their output dimension for the
black box baseline. he first layer is a dropout layer with

parameter p = 0.5 and takes the CLIP features as input.
We use LayerNorm and ReLU after fully connected layers.

The final layer outputs the class logits.

B Algorithm Analysis

In this section, we analyze Algorithm 1. In particular,
we perform an ablation study on the algorithm and study
the effect of hyperparameters such as dictionary size and
CLIP backbone size. The analysis uses the CIFAR10
and CIFAR100 datasets.

CIFARI10
1 - -
p—r—"> A—r—t Dictionary Size
0.8} | | =t = 100
o —o—1n = 50
§ 0.6 || —-—n = 30
= _
5 ——n =15
S 0.4 B n =10
0.2 - =
0 | | | | |

Num. queries

Figure 5: Comparing the test accuracy of the V-IP
classifier, post-observation of k queries selected by the
V-IP querier from learned dictionaries of size (a) 100,
(e) 50, (M) 30, (#) 15, and (@) 10.

B.1 Importance of Warm-Up Phase

We compare Algorithm 1 with and without warm-up
phase. In Fig. 7, we show that running a warm-up phase
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can boost accuracy. In particular, for CIFAR10, we
achieve 73% accuracy after three observed queries with
warm-up phase compared to 66% without the warm-up
phase. For CIFAR100, the accuracy gap is even more
pronounced. Note that without a warm-up phase we
run the querier phase on the randomly initialized query
dictionary. The dictionary phase subsequently refines the
dictionary on queries sampled with the trained querier.
However, the querier was tuned on a randomly initialized
dictionary and is therefore likely suboptimal. The warm-
up phase ensures the querier phase runs with a trained
dictionary.

B.2 Impact of Dictionary Initialization

In Fig. 8, we compare our method with random dictio-
nary initialization versus GPT-3 dictionary initialization.
In particular, the GPT-3 dictionary initialization uses
v; = Er(c;), vi =1, and 3; =0 in

0 {Sgn (BN%-@ (<|Z|| E (')>>) }j_l ’

where {¢;}?_; are the GPT-3 generated concepts for
the task. We find that the GPT-3 initialization speeds
up convergence, however it does not improve accuracy
compared to random initialization. In fact, the random
initialization performs marginally better. This suggests
one can learn query dictionaries from scratch without
relying on special initializations.

(29)

B.3 Advantages of Batch Norm Parame-
terization

In Fig. 9, we compare the BatchNorm parameterziation
to the standard dictionary parameterization

{0 = (g2 0) 2= 4) }_

where {v;}7; C R4, {3}, C R, and {B;}7, C R¢
are trainable parameters. We find that the BatchNorm
parameterization significantly improves accuracy.

Q= , (30)

B.4 Efficacy of Overcomplete Dictionar-
ies

In Fig. 5, we compare Algorithm 1 with different dic-
tionary sizes on CIFAR10. In general, we find that dic-
tionaries with more queries can achieve higher accuracy.



However, larger dictionaries take longer to converge and
accuracy stops growing at some dictionary size. Hence,
an optimal dictionary size is small enough to conver-
gence quickly and sufficiently large to achieve optimal
accuracy.

B.5 Impact of Encoder Architecture

In Fig. 10, we compare our method with the larger ViT-
L/14 CLIP backbone and the smaller ViT-B/16 CLIP
backbone. We find that our method performs vastly
better with the larger CLIP backbone, which underscores
the importance of a strong semantic embedding in our
framework.

B.6 Phased versus Joint Optimization

We compare our phased approach in Algorithm 1 to
the naive joint optimization approach, where SGD is
applied concurrently to the classifier, querier, and dictio-
nary parameters. Fig. 11 shows, that joint optimization
performs worse than phased optimization. In particu-
lar, for CIFAR10, we achieve 95% accuracy after just
four queries using phased optimization compared to 83%
with joint optimization. For CIFAR100, the accuracy
gap is even more prominent. For joint optimization on
CIFARI10, we train for 200 random sampling epochs and
200 biased sampling epochs until convergence. For joint
optimization on CIFAR100, we train for 300 random
sampling epochs and 300 biased sampling epochs until
convergence.

B.7 Hard Query Answers are Necessary
for Interpretability

In Section 4.1.1, we argued geometrically why using
learned hyperplane queries with soft answers compro-
mises interpretability. To validate this experimentally,
we run Algorithm 1 with soft query answers on CIFAR10.
In particular, we use the learnable query dictionary

0= {a = (i ()>}

where {v;}7_; C R? are trainable parameters. As illus-
trated in Fig. 6, Algorithm 1 with soft query answers
reaches over 50% test accuracy after observing a sin-
gle query-answer pair on CIFAR10 compared to 25%

(31)
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—o— Learned Hard CLIP Hyperplane Dictionary
—s— GPT-3 Soft CLIP Embedding Dictionary
—+— GPT-3 Hard CLIP Embedding Dictionary

Figure 6: Comparing the test accuracy of the V-IP clas-
sifier, post-observation of k queries selected by the V-IP
querier from (A) Learned Soft CLIP Hyperplane Dic-
tionary, (o) Learned Hard CLIP Hyperplane Dictionary,
(M) GPT-3 Soft CLIP Embedding Dictionary, and (¢)
GPT-3 CLIP Hard Embedding dictionary. The Learned
Soft CLIP Hyperplane Dictionary achieves over 50% test
accuracy after observing a single query. It is implausible
that a single query corresponding to a semantic concept
reveals over 50% of the CIFARI10 class labels. Hence,
soft query answers for learned query dictionaries com-
promise interpretability.

with the baseline GPT-3 Soft CLIP Embedding Dic-
tionary. Considering CIFARI10’s class labels (airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks), it is implausible that a single query correspond-
ing to a semantic concept reveals over 50% of the class
labels. Therefore, the query must correspond to multi-
ple concepts that are difficult to disentangle or not be
semantic.



Accuracy

Figure 7: We plot test accuracy of V-IP classifier after observing k query-answer pairs selected by the querier from a
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learned dictionary (o) with warm-up phase and (M) without warm-up phase.
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Figure 8: We plot test accuracy of V-IP classifier after observing k query-answer pairs selected by the querier from a
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learned dictionary with (e) random initialization and (M) GPT-3 initialization.
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Figure 9: We plot test accuracy of V-IP classifier after observing k query-answer pairs selected by the querier from a
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learned dictionary (o) with BatchNorm parameterization and (M) standard parameterization.
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Figure 10: We plot test accuracy of V-IP classifier after observing k query-answer pairs selected by the querier from a
learned dictionary with CLIP backbone (o) ViT-L/14 (large) and (M) ViT-B/16 (small).
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Figure 11: We plot test accuracy of V-IP classifier after observing k query-answer pairs selected by the querier from a
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learned dictionary optimized with (e) phased optimization and (M) joint optimization.
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